10 research outputs found

    Daily locomotion recognition and prediction: A kinematic data-based machine learning approach

    Get PDF
    More versatile, user-independent tools for recognizing and predicting locomotion modes (LMs) and LM transitions (LMTs) in natural gaits are still needed. This study tackles these challenges by proposing an automatic, user-independent recognition and prediction tool using easily wearable kinematic motion sensors for innovatively classifying several LMs (walking direction, level-ground walking, ascend and descend stairs, and ascend and descend ramps) and respective LMTs. We compared diverse state-of-the-art feature processing and dimensionality reduction methods and machine-learning classifiers to find an effective tool for recognition and prediction of LMs and LMTs. The comparison included kinematic patterns from 10 able-bodied subjects. The more accurate tools were achieved using min-max scaling [-1; 1] interval and 'mRMR plus forward selection' algorithm for feature normalization and dimensionality reduction, respectively, and Gaussian support vector machine classifier. The developed tool was accurate in the recognition (accuracy >99% and >96%) and prediction (accuracy >99% and >93%) of daily LMs and LMTs, respectively, using exclusively kinematic data. The use of kinematic data yielded an effective recognition and prediction tool, predicting the LMs and LMTs one-step-ahead. This timely prediction is relevant for assistive devices providing personalized assistance in daily scenarios. The kinematic data-based machine learning tool innovatively addresses several LMs and LMTs while allowing the user to self-select the leading limb to perform LMTs, ensuring a natural gait.This work was supported in part by the Fundação para a Ciência e Tecnologia (FCT) with the Reference Scholarship under Grant SFRH/BD/108309/2015 and SFRH/BD/147878/2019, by the FEDER Funds through the Programa Operacional Regional do Norte and national funds from FCT with the project SmartOs under Grant NORTE-01-0145-FEDER-030386, and through the COMPETE 2020—Programa Operacional Competitividade e Internacionalização (POCI)—with the Reference Project under Grant POCI-01-0145-FEDER-006941

    ACUTE EFFECTS OF A WARM-UP INCLUDING ACTIVE, PASSIVE, AND DYNAMIC STRETCHING ON VERTICAL JUMP PERFORMANCE

    No full text
    Carvalho, FLP, Carvalho, MCGA, Simao, R, Gomes, TM, Costa, PB, Neto, LB, Carvalho, RLP, and Dantas, EHM. Acute effects of a warm-up including active, passive, and dynamic stretching on vertical jump performance. J Strength Cond Res 26(9): 2447-2452, 2012-The purpose of this study was to examine the acute effects of 3 different stretching methods combined with a warm-up protocol on vertical jump performance. Sixteen young tennis players (14.5 +/- 2.8 years; 175 +/- 5.6 cm; 64.0 +/- 11.1 kg) were randomly assigned to 4 different experimental conditions on 4 successive days. Each session consisted of a general and specific warm-up, with 5 minutes of running followed by 10 jumps, accompanied by one of the subsequent conditions: (a) Control Condition (CC)-5 minutes of passive rest; (b) Passive Stretching Condition (PSC)-5 minutes of passive static stretching; (c) Active Stretching Condition (ASC)-5 minutes of active static stretching; and (d) Dynamic Stretching Condition (DC)-5 minutes of dynamic stretching. After each intervention, the subjects performed 3 squat jumps (SJs) and 3 countermovement jumps (CMJs), which were measured electronically. For the SJ, 1-way repeated measures analysis of variance (CC x PSC x ASC x DC) revealed significant decreases for ASC (28.7 +/- 4.7 cm; p = 0.01) and PSC (28.7 +/- 4.3 cm; p = 0.02) conditions when compared with CC (29.9 +/- 5.0 cm). For CMJs, there were no significant decreases (p > 0.05) when all stretching conditions were compared with the CC. Significant increases in SJ performance were observed when comparing the DC (29.6 +/- 4.9 cm; p = 0.02) with PSC (28.7 +/- 4.3 cm). Significant increases in CMJ performance were observed when comparing the conditions ASC (34.0 +/- 6.0 cm; p = 0.04) and DC (33.7 +/- 5.5 cm; p = 0.03) with PSC (32.6 +/- 5.5 cm). A dynamic stretching intervention appears to be more suitable for use as part of a warm-up in young athletes

    Identification of human chromosome 22 transcribed sequences with ORF expressed sequence tags

    No full text
    Transcribed sequences in the human genome can be identified with confidence only by alignment with sequences derived from cDNAs synthesized from naturally occurring mRNAs. We constructed a set of 250,000 cDNAs that represent partial expressed gene sequences and that are biased toward the central coding regions of the resulting transcripts. They are termed ORF expressed sequence tags (ORESTES). The 250,000 ORESTEs were assembled into 81,429 contigs. Of these, 1,181 (1.45%) were found to match sequences in chromosome 22 with at least one ORESTES contig for 162 (65.6%) of the 247 known genes, for 67 (44.6%) of the 150 related genes, and for 45 of the 148 (30.4%) EST-predicted genes on this chromosome. Using a set of stringent criteria to validate our sequences, we identified a further 219 previously unannotated transcribed sequences on chromosome 22. Of these, 171 were in fact also defined by EST or full length cDNA sequences available in GenBank but not utilized in the initial annotation of the first human chromosome sequence. Thus despite representing less than 15% of all expressed human sequences in the public databases at the time of the present analysis, ORESTEs sequences defined 48 transcribed sequences on chromosome 22 not defined by other sequences. All of the transcribed sequences defined by ORESTEs coincided with DNA regions predicted as encoding exons by GENSCAN.9723126901269

    The contribution of 700,000 ORF sequence tags to the definition of the human transcriptome

    No full text
    Open reading frame expressed sequences tags (ORESTES) differ from conventional ESTs by providing sequence data from the central protein coding portion of transcripts. We generated a total of 696,745 ORESTES sequences from 24 human tissues and used a subset of the data that correspond to a set of 15,095 full-length mRNAs as a means of assessing the efficiency of the strategy and its potential contribution to the definition of the human transcriptome. We estimate that ORESTES sampled over 80% of all highly and moderately expressed, and between 40% and 50% of rarely expressed, human genes. In our most thoroughly sequenced tissue, the breast, the 130,000 ORESTES generated are derived from transcripts from an estimated 70% of all genes expressed in that tissue, with an equally efficient representation of both highly and poorly expressed genes. In this respect, we find that the capacity of the ORESTES strategy both for gene discovery and shotgun transcript sequence generation significantly exceeds that of conventional ESTs. The distribution of ORESTES is such that many human transcripts are now represented by a scaffold of partial sequences distributed along the length of each gene product. The experimental joining of the scaffold components, by reverse transcription–PCR, represents a direct route to transcript finishing that may represent a useful alternative to full-length cDNA cloning

    Identification of human chromosome 22 transcribed sequences with ORF expressed sequence tags

    No full text
    Transcribed sequences in the human genome can be identified with confidence only by alignment with sequences derived from cDNAs synthesized from naturally occurring mRNAs. We constructed a set of 250,000 cDNAs that represent partial expressed gene sequences and that are biased toward the central coding regions of the resulting transcripts. They are termed ORF expressed sequence tags (ORESTES). The 250,000 ORESTES were assembled into 81,429 contigs. Of these, 1,181 (1.45%) were found to match sequences in chromosome 22 with at least one ORESTES contig for 162 (65.6%) of the 247 known genes, for 67 (44.6%) of the 150 related genes, and for 45 of the 148 (30.4%) EST-predicted genes on this chromosome. Using a set of stringent criteria to validate our sequences, we identified a further 219 previously unannotated transcribed sequences on chromosome 22. Of these, 171 were in fact also defined by EST or full length cDNA sequences available in GenBank but not utilized in the initial annotation of the first human chromosome sequence. Thus despite representing less than 15% of all expressed human sequences in the public databases at the time of the present analysis, ORESTES sequences defined 48 transcribed sequences on chromosome 22 not defined by other sequences. All of the transcribed sequences defined by ORESTES coincided with DNA regions predicted as encoding exons by genscan. (http://genes.mit.edu/GENSCAN.html)

    Intravenous NPA for the treatment of infarcting myocardium early: InTIME-II, a double-blind comparison on of single-bolus lanoteplase vs accelerated alteplase for the treatment of patients with acute myocardial infarction

    No full text
    Aims to compare the efficacy and safety of lanoteplase, a single-bolus thrombolytic drug derived from alteplase tissue plasminogen activator, with the established accelerated alteplase regimen in patients presenting within 6 h of onset of ST elevation acute myocardial infarction. Methods and Results 15 078 patients were recruited from 855 hospitals worldwide and randomized in a 2:1 ratio to receive either lanoteplase 120 KU. kg-1 as a single intravenous bolus, or up to 100 mg accelerated alteplase given over 90 min. The primary end-point was all-cause mortality at 30 days and the hypothesis was that the two treatments would be equivalent. By 30 days, 6.61% of alteplase-treated patients and 6.75% lanoteplase-treated patients had died (relative risk 1.02). Total stroke occurred in 1.53% alteplase- and 1.87% lanoteplase-treated patients (ns); haemorrhagic stroke rates were 0.64% alteplase and 1.12% lanoteplase (P=0.004). The net clinical deficit of 30-day death or non-fatal disabling stroke was 7.0% and 7.2%, respectively. By 6 months, 8.8% of alteplase-treated patients and 8.7% of lanoteplase-treated patients had died. Conclusion Single-bolus weight-adjusted lanoteplase is an effective thrombolytic agent, equivalent to alteplase in terms of its impact on survival and with a comparable risk-benefit profile. The single-bolus regimen should shorten symptoms to treatment times and be especially convenient for emergency department or out-of-hospital administration. (C) 2000 The European Society of Cardiology
    corecore